Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical, morphological and growth traits.

Identifieur interne : 000B47 ( Main/Exploration ); précédent : 000B46; suivant : 000B48

Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical, morphological and growth traits.

Auteurs : Luisa Bresadola [Suisse] ; Céline Caseys [Suisse, États-Unis] ; Stefano Castiglione [Italie] ; C Alex Buerkle [États-Unis] ; Daniel Wegmann [Suisse] ; Christian Lexer [Suisse, Autriche]

Source :

RBID : pubmed:31104343

Descripteurs français

English descriptors

Abstract

The genomic architecture of functionally important traits is key to understanding the maintenance of reproductive barriers and trait differences when divergent populations or species hybridize. We conducted a genome-wide association study (GWAS) to study trait architecture in natural hybrids of two ecologically divergent Populus species. We genotyped 472 seedlings from a natural hybrid zone of Populus alba and Populus tremula for genome-wide markers from reduced representation sequencing, phenotyped the plants in common gardens for 46 phytochemical (phenylpropanoid), morphological and growth traits, and used a Bayesian polygenic model for mapping. We detected three classes of genomic architectures: traits with finite, detectable associations of genetic loci with phenotypic variation in addition to highly polygenic heritability; traits with indications for polygenic heritability only; and traits with no detectable heritability. For the first class, we identified genome regions with plausible candidate genes for phenylpropanoid biosynthesis or its regulation, including MYB transcription factors and glycosyl transferases. GWAS in natural, recombinant hybrids represent a promising step towards resolving the genomic architecture of phenotypic traits in long-lived species. This facilitates the fine-mapping and subsequent functional characterization of genes and networks causing differences in hybrid performance and fitness.

DOI: 10.1111/nph.15930
PubMed: 31104343
PubMed Central: PMC6771622


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical, morphological and growth traits.</title>
<author>
<name sortKey="Bresadola, Luisa" sort="Bresadola, Luisa" uniqKey="Bresadola L" first="Luisa" last="Bresadola">Luisa Bresadola</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Caseys, Celine" sort="Caseys, Celine" uniqKey="Caseys C" first="Céline" last="Caseys">Céline Caseys</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Castiglione, Stefano" sort="Castiglione, Stefano" uniqKey="Castiglione S" first="Stefano" last="Castiglione">Stefano Castiglione</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biology 'A. Zambelli', University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Chemistry and Biology 'A. Zambelli', University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno</wicri:regionArea>
<wicri:noRegion>Salerno</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Buerkle, C Alex" sort="Buerkle, C Alex" uniqKey="Buerkle C" first="C Alex" last="Buerkle">C Alex Buerkle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071</wicri:regionArea>
<wicri:noRegion>82071</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wegmann, Daniel" sort="Wegmann, Daniel" uniqKey="Wegmann D" first="Daniel" last="Wegmann">Daniel Wegmann</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Swiss Institute of Bioinformatics, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Swiss Institute of Bioinformatics, 1700, Fribourg</wicri:regionArea>
<wicri:noRegion>Fribourg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lexer, Christian" sort="Lexer, Christian" uniqKey="Lexer C" first="Christian" last="Lexer">Christian Lexer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 12, A-1030, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 12, A-1030, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31104343</idno>
<idno type="pmid">31104343</idno>
<idno type="doi">10.1111/nph.15930</idno>
<idno type="pmc">PMC6771622</idno>
<idno type="wicri:Area/Main/Corpus">000897</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000897</idno>
<idno type="wicri:Area/Main/Curation">000897</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000897</idno>
<idno type="wicri:Area/Main/Exploration">000897</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical, morphological and growth traits.</title>
<author>
<name sortKey="Bresadola, Luisa" sort="Bresadola, Luisa" uniqKey="Bresadola L" first="Luisa" last="Bresadola">Luisa Bresadola</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Caseys, Celine" sort="Caseys, Celine" uniqKey="Caseys C" first="Céline" last="Caseys">Céline Caseys</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Castiglione, Stefano" sort="Castiglione, Stefano" uniqKey="Castiglione S" first="Stefano" last="Castiglione">Stefano Castiglione</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biology 'A. Zambelli', University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Chemistry and Biology 'A. Zambelli', University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno</wicri:regionArea>
<wicri:noRegion>Salerno</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Buerkle, C Alex" sort="Buerkle, C Alex" uniqKey="Buerkle C" first="C Alex" last="Buerkle">C Alex Buerkle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071</wicri:regionArea>
<wicri:noRegion>82071</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wegmann, Daniel" sort="Wegmann, Daniel" uniqKey="Wegmann D" first="Daniel" last="Wegmann">Daniel Wegmann</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Swiss Institute of Bioinformatics, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Swiss Institute of Bioinformatics, 1700, Fribourg</wicri:regionArea>
<wicri:noRegion>Fribourg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lexer, Christian" sort="Lexer, Christian" uniqKey="Lexer C" first="Christian" last="Lexer">Christian Lexer</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 12, A-1030, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 12, A-1030, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosome Mapping (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genome-Wide Association Study (MeSH)</term>
<term>Hybridization, Genetic (MeSH)</term>
<term>Linkage Disequilibrium (genetics)</term>
<term>Phenotype (MeSH)</term>
<term>Phytochemicals (metabolism)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Probability (MeSH)</term>
<term>Quantitative Trait, Heritable (MeSH)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Caractère quantitatif héréditaire (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Composés phytochimiques (métabolisme)</term>
<term>Déséquilibre de liaison (génétique)</term>
<term>Génome végétal (MeSH)</term>
<term>Hybridation génétique (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Probabilité (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Étude d'association pangénomique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phytochemicals</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Linkage Disequilibrium</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Déséquilibre de liaison</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Composés phytochimiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Genome, Plant</term>
<term>Genome-Wide Association Study</term>
<term>Hybridization, Genetic</term>
<term>Phenotype</term>
<term>Probability</term>
<term>Quantitative Trait, Heritable</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Caractère quantitatif héréditaire</term>
<term>Cartographie chromosomique</term>
<term>Génome végétal</term>
<term>Hybridation génétique</term>
<term>Phénotype</term>
<term>Probabilité</term>
<term>Spécificité d'espèce</term>
<term>Étude d'association pangénomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The genomic architecture of functionally important traits is key to understanding the maintenance of reproductive barriers and trait differences when divergent populations or species hybridize. We conducted a genome-wide association study (GWAS) to study trait architecture in natural hybrids of two ecologically divergent Populus species. We genotyped 472 seedlings from a natural hybrid zone of Populus alba and Populus tremula for genome-wide markers from reduced representation sequencing, phenotyped the plants in common gardens for 46 phytochemical (phenylpropanoid), morphological and growth traits, and used a Bayesian polygenic model for mapping. We detected three classes of genomic architectures: traits with finite, detectable associations of genetic loci with phenotypic variation in addition to highly polygenic heritability; traits with indications for polygenic heritability only; and traits with no detectable heritability. For the first class, we identified genome regions with plausible candidate genes for phenylpropanoid biosynthesis or its regulation, including MYB transcription factors and glycosyl transferases. GWAS in natural, recombinant hybrids represent a promising step towards resolving the genomic architecture of phenotypic traits in long-lived species. This facilitates the fine-mapping and subsequent functional characterization of genes and networks causing differences in hybrid performance and fitness.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31104343</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>223</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical, morphological and growth traits.</ArticleTitle>
<Pagination>
<MedlinePgn>2076-2089</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.15930</ELocationID>
<Abstract>
<AbstractText>The genomic architecture of functionally important traits is key to understanding the maintenance of reproductive barriers and trait differences when divergent populations or species hybridize. We conducted a genome-wide association study (GWAS) to study trait architecture in natural hybrids of two ecologically divergent Populus species. We genotyped 472 seedlings from a natural hybrid zone of Populus alba and Populus tremula for genome-wide markers from reduced representation sequencing, phenotyped the plants in common gardens for 46 phytochemical (phenylpropanoid), morphological and growth traits, and used a Bayesian polygenic model for mapping. We detected three classes of genomic architectures: traits with finite, detectable associations of genetic loci with phenotypic variation in addition to highly polygenic heritability; traits with indications for polygenic heritability only; and traits with no detectable heritability. For the first class, we identified genome regions with plausible candidate genes for phenylpropanoid biosynthesis or its regulation, including MYB transcription factors and glycosyl transferases. GWAS in natural, recombinant hybrids represent a promising step towards resolving the genomic architecture of phenotypic traits in long-lived species. This facilitates the fine-mapping and subsequent functional characterization of genes and networks causing differences in hybrid performance and fitness.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bresadola</LastName>
<ForeName>Luisa</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-8993-8323</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Caseys</LastName>
<ForeName>Céline</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0003-4187-9018</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Castiglione</LastName>
<ForeName>Stefano</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-0632-4677</Identifier>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biology 'A. Zambelli', University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buerkle</LastName>
<ForeName>C Alex</ForeName>
<Initials>CA</Initials>
<Identifier Source="ORCID">0000-0003-4222-8858</Identifier>
<AffiliationInfo>
<Affiliation>Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wegmann</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0003-2866-6739</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Swiss Institute of Bioinformatics, 1700, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lexer</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-7221-7482</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 12, A-1030, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064209">Phytochemicals</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="Y">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="N">Genome-Wide Association Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="Y">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064209" MajorTopicYN="N">Phytochemicals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011336" MajorTopicYN="N">Probability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019655" MajorTopicYN="Y">Quantitative Trait, Heritable</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus </Keyword>
<Keyword MajorTopicYN="Y">RAD-seq</Keyword>
<Keyword MajorTopicYN="Y">admixture mapping</Keyword>
<Keyword MajorTopicYN="Y">fitness-related traits</Keyword>
<Keyword MajorTopicYN="Y">genomic architecture</Keyword>
<Keyword MajorTopicYN="Y">heritability</Keyword>
<Keyword MajorTopicYN="Y">natural hybrids</Keyword>
<Keyword MajorTopicYN="Y">polygenic modeling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31104343</ArticleId>
<ArticleId IdType="doi">10.1111/nph.15930</ArticleId>
<ArticleId IdType="pmc">PMC6771622</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2007 Oct;12(10):444-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jun 3;465(7298):627-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20336072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Nov;46(11):1173-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25282103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jun;152(2):713-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10353912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Aug;67(4):736-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21554453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Dec 09;3:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25487987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Jan;3(1):101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23316442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2013 Jan;45(1):43-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23242369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(2):e1003264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23408905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Oct;46(10):1089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25151358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 1994 Jan-Feb;85(1):59-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8120361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22861491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2012 Jan;66(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22220860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):510-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):526-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20122131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2011 May;20(10):2044-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21476991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2012 Jul;28(7):342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22520730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2007 Jan;129(1):71-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17043744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Mar;67(6):1795-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26842984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Sep;23(18):4555-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24866941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2009 Jan;36(1):17-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19161942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2013 May;67(5):1235-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Nov;25(21):5282-5295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27363308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 Feb;98(2):74-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16985509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):4135-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24151295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Jun 17;44(7):821-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22706312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1497-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 May;8(5):689-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25840349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Sep;23(17):4316-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2017 Feb;18(2):117-127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27840428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2006 Apr;78(4):629-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16532393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2014 May;183(5):711-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24739202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Jan;217(1):416-427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29124769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Aug;65(15):4191-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24803501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 May;43(5):491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Jun;22(11):3151-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23110438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11479-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11562485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jun 19;165(4):1424-1439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24948832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2013 Sep;67(9):2498-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(11):2482-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26880192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Aug;37(8):857-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21748301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2002 Mar;159 Suppl 3:S36-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Jun 15;169(7):1177-1186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28622505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2015 Aug;69(8):1987-2004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26174368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2017 Feb;130(2):269-281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27734096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Dec;23(12):686-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18845358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1992 Oct;132(2):583-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1427045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2008 Mar 05;8:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genesis. 2015 Aug;53(8):474-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26201819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2017 Aug;32(8):601-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28645486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Biol. 2013 Jun;40(2):310-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23687396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 2012 Jul;238(1):49-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22465838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Feb;209(3):1067-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26499329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 26;10(5):e0128200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26010156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Feb 23;20(4):R208-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 16;6:28043</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27306416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Aug;29(8):1907-1926</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28733420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Nov;21(21):5265-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22681397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2017 Jan;26(1):59-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27447453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2003 Jun 29;358(1434):1141-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12831480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Poult Sci. 2003 Jan;82(1):9-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12580238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Feb;175(2):805-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17151251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1993;27:205-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8122902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2004 May;26(5):479-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15112228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Dec;85(23):9119-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3194414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2013 Dec;111(6):474-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23860234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2004 Jan;161(1):225-233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Apr;169(4):2225-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Jan 1;13(1):128-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8306956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Feb;22(3):842-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22967258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Nov 18;16:969</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26582102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(11):2443-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27106273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 May;149(1):367-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9584110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Apr 04;484(7392):55-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22481358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Nov;10(11):542-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Nov;25(21):5330-5344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27661461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Jul 20;43(9):847-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21775992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2017 Nov 15;284(1866):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29118129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Dec 04;44(1):32-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22138690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jul 22;9(7):e97589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25050709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Oct;186(2):699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20679517</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Autriche</li>
<li>Italie</li>
<li>Suisse</li>
<li>États-Unis</li>
</country>
<region>
<li>Canton de Fribourg</li>
<li>Vienne (Autriche)</li>
</region>
<settlement>
<li>Fribourg</li>
<li>Vienne (Autriche)</li>
</settlement>
<orgName>
<li>Université de Fribourg</li>
</orgName>
</list>
<tree>
<country name="Suisse">
<region name="Canton de Fribourg">
<name sortKey="Bresadola, Luisa" sort="Bresadola, Luisa" uniqKey="Bresadola L" first="Luisa" last="Bresadola">Luisa Bresadola</name>
</region>
<name sortKey="Caseys, Celine" sort="Caseys, Celine" uniqKey="Caseys C" first="Céline" last="Caseys">Céline Caseys</name>
<name sortKey="Lexer, Christian" sort="Lexer, Christian" uniqKey="Lexer C" first="Christian" last="Lexer">Christian Lexer</name>
<name sortKey="Wegmann, Daniel" sort="Wegmann, Daniel" uniqKey="Wegmann D" first="Daniel" last="Wegmann">Daniel Wegmann</name>
<name sortKey="Wegmann, Daniel" sort="Wegmann, Daniel" uniqKey="Wegmann D" first="Daniel" last="Wegmann">Daniel Wegmann</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Caseys, Celine" sort="Caseys, Celine" uniqKey="Caseys C" first="Céline" last="Caseys">Céline Caseys</name>
</noRegion>
<name sortKey="Buerkle, C Alex" sort="Buerkle, C Alex" uniqKey="Buerkle C" first="C Alex" last="Buerkle">C Alex Buerkle</name>
</country>
<country name="Italie">
<noRegion>
<name sortKey="Castiglione, Stefano" sort="Castiglione, Stefano" uniqKey="Castiglione S" first="Stefano" last="Castiglione">Stefano Castiglione</name>
</noRegion>
</country>
<country name="Autriche">
<region name="Vienne (Autriche)">
<name sortKey="Lexer, Christian" sort="Lexer, Christian" uniqKey="Lexer C" first="Christian" last="Lexer">Christian Lexer</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31104343
   |texte=   Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical, morphological and growth traits.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31104343" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020